skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skeens, Erin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cas9 is a metal-dependent nuclease that has revolutionized gene editing across diverse cells and organisms exhibiting varying ion uptake, metabolism, and concentrations. However, how divalent metals impact its catalytic function, and consequently its editing efficiency in different cells, remains unclear. Here, extensive molecular simulations, Markov State Models, biochemical and NMR experiments, demonstrate that divalent metals – Mg2+, Ca2+, and Co2+– promote activation of the catalytic HNH domain by binding within a dynamically forming divalent metal binding pocket (DBP) at the HNH-RuvC interface. Mutations in DBP residues disrupt HNH activation and impair the coupled catalytic activity of both nucleases, identifying this cryptic DBP as a key regulator of Cas9’s metal-dependent activity. The ionic strength thereby promotes Cas9’s conformational activation, while its catalytic activity is metal-specific. These findings are critical to improving the metal-dependent function of Cas9 and its use for genome editing in different cells and organisms. 
    more » « less
    Free, publicly-accessible full text available August 26, 2026
  2. The high-fidelity (HF1), hyper-accurate (Hypa), and evolved (Evo) variants of the CRISPR-associated protein 9 (Cas9) endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in recognition subdomain 3 (Rec3) mediate specificity in these variants are poorly understood. Here, solution nuclear magnetic resonance and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic His-Asn-His (HNH) domain. The variants remodel the communication sourcing from the Rec3 α helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles. 
    more » « less
  3. The exquisite sensitivity of the NMR chemical shift to local environment makes it an ideal probe to assess atomic level perturbations in proteins of all sizes and structural compositions. Recent advances in solution and solid-state NMR spectroscopy of biomolecules have leveraged the chemical shift to report on short- and long-range couplings between individual amino acids to establish “networks” of residues that form the basis of allosteric pathways that transmit chemical signals through the protein matrix to induce functional responses. The simple premise that thermodynamically and functionally coupled regions of a protein (i.e. active and allosteric sites) should be reciprocally sensitive to structural or dynamic perturbations has enabled NMR spectroscopy, the premier method for molecular resolution of protein structural fluctuations, to occupy a place at the forefront of investigations into protein allostery. Here, we detail several key methods of NMR chemical shift analysis to extract mechanistic information about long-range chemical signaling in a protein, focusing on practical methodological aspects and the circumstances under which a given approach would be relevant. We also detail some of the experimental considerations that should be made when applying these methods to specific protein systems. 
    more » « less
  4. The CRISPR-associated protein 9 (Cas9) has been engineered as a precise gene editing tool to make double-strand breaks. CRISPR-associated protein 9 binds the folded guide RNA (gRNA) that serves as a binding scaffold to guide it to the target DNA duplex via a RecA-like strand-displacement mechanism but without ATP binding or hydrolysis. The target search begins with the protospacer adjacent motif or PAM-interacting domain, recognizing it at the major groove of the duplex and melting its downstream duplex where an RNA-DNA heteroduplex is formed at nanomolar affinity. The rate-limiting step is the formation of an R-loop structure where the HNH domain inserts between the target heteroduplex and the displaced non-target DNA strand. Once the R-loop structure is formed, the non-target strand is rapidly cleaved by RuvC and ejected from the active site. This event is immediately followed by cleavage of the target DNA strand by the HNH domain and product release. Within CRISPR-associated protein 9, the HNH domain is inserted into the RuvC domain near the RuvC active site via two linker loops that provide allosteric communication between the two active sites. Due to the high flexibility of these loops and active sites, biophysical techniques have been instrumental in characterizing the dynamics and mechanism of the CRISPR-associated protein 9 nucleases, aiding structural studies in the visualization of the complete active sites and relevant linker structures. Here, we review biochemical, structural, and biophysical studies on the underlying mechanism with emphasis on how CRISPR-associated protein 9 selects the target DNA duplex and rejects non-target sequences. 
    more » « less